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Abstract. We apply the Kovacs experimental protocol to classical and quantum p-spin models. We show
that these models have memory effects as those observed experimentally in super-cooled polymer melts.
We discuss our results in connection to other classical models that capture memory effects. We propose
that a similar protocol applied to quantum glassy systems might be useful to understand their dynamics.
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Nonequilibrium and irreversible thermodynamics

1 Introduction

The Kovacs memory effect was first reported by this au-
thor in the 60s [1]. It demonstrates that super-cooled lig-
uids when taken out of equilibrium have a very intricate
dynamics that cannot be predicted on the basis of the
knowledge of the instantaneous value of the state vari-
ables (P, V, T) right after the perturbation. More precisely,
Kovacs showed that the specific volume of a polymer
melt in its super-cooled liquid phase, has a rather non-
trivial evolution that depends on the thermal history of
the sample [1,2]. Non-trivial effects of temperature varia-
tions were also observed in the evolution of (two-time) sus-
ceptibilities of dipolar glasses [3], spin-glasses [4] and many
other glassy systems [5,6]. History-dependent phenomena
in granular compaction have been recently reported [7].
In this case, the control parameter is the tapping strength
and the observable is the density.

The experimental setup involved in the Kovacs effect
is the following. In a first step, one quenches an equili-
brated liquid with a very fast cooling rate from a high
temperature Ty to a low temperature 15, at time ¢t = 0.
One then follows the subsequent evolution of the quan-
tity of interest that in Kovacs’ experiments is the spe-
cific volume. In order to match what we shall study in
this paper, we describe the experiment using another one-
time quantity, the energy density, as the example. The
energy density relaxes in time and it slowly approaches
an asymptotic value that may fall out of the experimental
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time-window. The time-dependent curve £(72)(t) consti-
tutes a reference and we use a superscript (73) to indi-
cate that it has been obtained using the first prescrip-
tion, at fixed external temperature T5. The extrapolated
asymptotic value defines £,5(T»). In a second step, one
first quenches the sample from the same high temperature
T to a lower temperature T1(< T3) at time ¢ = 0, waits
until a carefully chosen time ¢; and then heats the sample
to the final temperature T5. The value of 1 is chosen such
that €M —T2)(t]) = £,4(T), where the plus sign indicates
that the one-time quantity should match the asymptotic
value obtained with the first procedure right after heating
the sample from 77 to T». [In the experimental proto-
col the need to use T =T2)(t1) = £,,(Ty) is due to the
fact that when changing the temperature there is a triv-
ial response due to the thermal expansion of the local de-
grees of freedom.] Since the initial value of the energy den-
sity at the final temperature T3 is already the asymptotic
one, one could have expected that the energy remained
constantly fixed to this value for all subsequent times
independently of the value of Ty (apart from very
fast rearrangements decaying exponentially). However,
Kovacs demonstrated that after ¢; the energy-density,
E(Tl_’T2)(t), has a slow non-monotonic dependence on
time, first increasing and then decreasing back to its initial
and asymptotic value Eq4(T5):

EM=T) () = £,,(Ts) + AE(1), (1)

with the “Kovacs hump” AE satisfying

AE(t) > 0, AE(t) = Jim A£(t) =0. (2)
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The form of the hump depends on the values T» and T}
used. Qualitatively, its height is an increasing function of
T5 — T and the time at which the maximum is reached
decreases when T — T} increases.

It is interesting to note that Kovacs’ experiments have
been performed in the super-cooled liquid phase. While
it would be no surprise to find non-equilibrium effects in
the glassy phase, the reason why one also finds a non-
equilibrium behavior in the super-cooled liquid is that the
jump in the external temperature drives the system out
of equilibrium and the relaxation occurs on a very long
timescale. This experiment proves that the knowledge of
the state variables, in Kovacs’ experiments P,V and T at
tf‘, is not sufficient to determine the subsequent evolution
of the same quantities in the glassy and super-cooled liquid
phases (if the latter has been recently strongly perturbed).

Recently, several authors presented analytical and nu-
merical studies of this effect using a variety of models with
glassy dynamics. So far, apart from phenomenological ap-
proaches [2], the Kovacs effect has been analyzed numer-
ically with molecular dynamic simulations of a molecular
model of a fragile glass former [8] and Monte Carlo sim-
ulations of the 3d Edwards-Anderson spin-glass [9], and
analytically within the ferromagnetic Ising chain [10], the
critical 2d Xy model [11], the trap model [12], domain
growth [12], 1d kinetically constrained spin models of frag-
ile and strong type [13], and the parking lot model of gran-
ular matter [14]. It has been suggested that the quantita-
tive analysis of the Kovacs effect may help distinguishing
between different glassy models and, perhaps, may also
help identifying spatial properties of glassy systems. In
this paper we show that the main qualitative features of
the classical Kovacs effect are captured by the fully con-
nected spherical p-spin disordered system [15], a model
with no spatial structure but with a slow dynamics lead-
ing to very slow relaxations close to the transition to and
in the glassy phase [16,17]. This ‘negative’ result, as far as
what can be deduced about spatial rearrangements from
the Kovacs effect, is reminiscent of the discussion [18] on
the interpretation of hole burning experiments [19]. We
also discuss the scaling laws that describe the behavior
of the hump and compare them to what found in other
glassy models.

On the other hand, the analysis of quantum glassy
systems is now starting to call the attention of experi-
mentalists and theoreticians. The slow, history-dependent
relaxation of a dipolar quantum system in its glassy phase
has been reported [20]. The sample that entered the glassy
phase following a quantum route (changing the strength
of quantum fluctuations at fixed low temperature) is al-
ways in advance with respect to the one that arrived at
the same point in parameter space following a classical
path (keeping the strength of quantum fluctuations fixed
and cooling the system). This has been demonstrated by
the fact that the time-dependent dielectric constant of the
quantum-cooled sample is closer to its asymptotic value
at any finite, experimental time. Memory effects were also
observed in glasses at ultra-low temperatures [21] and the
electron glass [22].

A variant of the Kovacs procedure where the control
parameter is the strength of quantum fluctuations can be
easily envisaged. The question then arises as to whether
a hump appears and which is its structure, scaling form,
etc. We address this question using a quantum extension
of the p-spin model introduced and studied in [23,24] (see
also [25]).

In short, in this paper we show that simple disor-
dered mean-field models capture the phenomenology of
the Kovacs effect. With this aim, we analyze the non-
equilibrium relaxation of the spherical p-spin disordered
model in its classical [16,17] and quantum [23] versions,
see Section 2 for their definitions. First, we reproduce the
classical setup using temperature as the control parame-
ter and we discuss the results in comparison with previ-
ous explanations of the same effect (Sect. 3). Second, we
switch on quantum fluctuations and use their strength as
the control parameter (Sect. 4). In both cases we follow
the evolution in time of the potential energy-density of the
system. We present our conclusions in Section 5.

2 The spherical p-spin model

The spherical p-spin model is defined by the Hamilto-
nian [15]

H][S] = — Z Jiliz..,ipsil Si2 e Sip . (3)

(iviz...ip)

The spins s; are continuous variables s; € (—o0, o) forced
to satisfy the global spherical constraint ZN s2 = N

i=1%i
with IV their total number in the sample. The exchange
interaction Jy,4,..4, are quenched random variables drawn

from a Gaussian distribution with average [J;,..;,] = 0

and variance [J7,_; | = J?p!/(2NP~1). We henceforth use
square brackets to indicate the average over disorder. The
interactions occur between all groups of p spins in the
sample. The model is then fully-connected and mean-field
in character. The scaling of the variance [Jimip] with N
has been chosen so as to ensure a good thermodynamic
limit. The parameter p takes integer values, p > 2. Mixed
models with a Hamiltonian with two terms of the form (3)
with p =2 and p = 4 [26] are also of interest [17].

The classical dynamics is determined by the Langevin
equation

OE(t)

5i(t) = T s p(t)si(t) + &i(t) (4)

where E(t) is the total energy, u(t) is the Lagrange mul-
tiplier enforcing the spherical constraint, and &;(t) is a
Gaussian white-noise with zero mean and correlations

(& )& (t) = 2kpT;0(t — ') . (5)

We assume that the system is prepared at ¢t = 0 with an
infinitely fast quench from Ty — oo to the initial temper-
ature T7. The dynamic equations for the macroscopic or-
der parameters are derived using standard functional tech-
niques [17]. We discuss them below, as the classical limit
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of the quantum extension of the same model. The models
with p = 2, p > 3 have different dynamics; the former
yields a mean-field description of simple domain growth,
while the latter case is related to the schematic mode-
coupling theory (MCT) of super-cooled liquids and glasses.
These models and their generalizations are reviewed in de-
tail in [17].

Quantum fluctuations can be introduced [23] by up-
grading the spins s; to coordinate-like operators, adding

a ‘kinetic term’
1 X
BY; > oI (6)
i=1

to the Hamiltonian (3), and imposing canonical commu-
tation relations

[I1;, 5] = ihdy; ,  [3,8]] =0, [II,II;]=0. (7)
At time t = 0 we set the model in contact with an Ohmic
bath of quantum harmonic oscillators

al 1 al 1
Hy, = Z%ﬁ%Jngmlwfﬁc?, (8)
=1 =1
N
Hypo= =Y 8> cui, (9)
=1 1=1

where, for simplicity, we considered a bilinear coupling,
Hg,. (Note that for the spherical problem it is not nec-
essary to introduce a counter-term.) We assume that this
environment has a well-defined temperature and that it
is not modified by the interaction with the system. The
initial density matrix is factorized and we choose random
initial conditions for the system. After integrating out the
bath degrees of freedom, and using the fully-connected
character of (3), one arrives at a dynamic generating func-
tional from which one derives exact dynamic equations for
the macroscopic two-time dependent order parameters

tt NZ_:
; [(3:(
R(t,t') Z: t,

h is an infinitesimal field that couples linearly to the spins,
modifying the Hamiltonian as H — H — >, _, h;3;. C'is
the symmetric correlation function and R is the linear
response of the system.

The dynamic equations take the Schwinger-Dyson
form

[MOF + u(t)] R(t,t) =

O (10)

(11)

h=0

5t —1)
t

+/ dt”E(t,t”)R(ﬁ”,t/), (12)
t/

(MO} + u(t)] Ct,t') = /t dt" X(t,t"\C(t",t)
0

t/
+/ " D(t,t”)R(tl,t”) 7 (13)
0

with the self-energy X and the vertex D given by

X, = —dnt —t') +o(t,t'),
D(t,t") = 2hv(t — t') +d(t,t') .

(14)
(15)

The first contributions originate in the interaction with
the Ohmic bath of spectral density [23,24]
we M o(w) |

I(w)

-7 (16)

where A is a cut-off included to avoid divergences. The
kernels n and v are functions of the time-difference 7 =
t —t' and they are given by

(7)7747/12 2AT
=T U

4 [e.¢]
l/ dw we™*/"coth (ﬁTHw) cos(wt). (18)
0

™

(17)

v(T) =

The second contributions, ¢ and d, are due to the inter-
actions in the system and read

o(t,t') = J%Im [C(t,t’) - %R(t,t’)} ) : (19)
d(t,t)—p—JQRe [C( ¢y - Z;(R(t t)+R(t',t))r .
(20)

An integral equation that fixes the Lagrange multiplier
w1(t) supplements these equations and it is derived from
the requirement C(t,t) = 1 for all times [23],

u(t) = /Ot dt" [ X, ")C(t,t") + D(t,t")R(t,t")]

t t
+M / dt” / dt" O R(t, t"YD(" , "o R(t,t"")
0 0

+ M2 [B,R(t, 5)0%,C(s,1) — %Rt )0y C(s,t)] | s —o.

t—t

(21)

The classical limit is easily obtained by neglecting the
kinetic term and by taking the limit 7 — 0. Indeed, in this
case, the effect of the coupling to the bath reduces to the
usual contributions originating in the friction and noise
terms of the Langevin equation and involving a first-order
time-derivative of the correlation and response when A is
further taken to infinity.

In the quantum case, three contributions to the total
energy density can be identified: the kinetic part, the po-
tential part and the interaction with the bath. In the fol-
lowing we focus on the averaged potential energy density

Si, (t)>

(22)

< Z Jivig..ip8iy (1)8i,(t) . ..
(

i1do.ip)
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With a simple calculation one finds

S(t)/ooo dt’ [o(t,t")C(t,t") +d(t,t)R(t, )]  (23)

that in the classical case becomes

I [

ew=-5|

dt’ OP71(t, t)R(t, ) . (24)

3 Classical case

In this section we analyze the classical problem with p = 3.
After recalling the value of the asymptotic energy-density
for the isothermal relaxation, we solve numerically the dy-
namic equations for C' and R following Kovacs’ protocol.
We analyze the Kovacs hump and we obtain its scaling
with time and temperature in the three regimes of short,
intermediate and long times.

3.1 Analytic results

In the high-temperature phase the Fluctuation Dissipa-
tion Theorem (FDT) implies

t /
D .. , 1 , 160(t,t> 1
(1) =P (R I ULR .
basT) = =3 Jim | dt" CV (4 8) 5 2T
(25)

kp = J = 1 henceforth. We shall focus on the p = 3 model
and use Ty = 0.75 as the classical reference case for which
Eus(To) ~ —0.667 (see Fig. 1).

This model undergoes a dynamic transition from an
equilibrium (paramagnetic) to a non-equilibrium (glassy)
phase at

pp—2)P—2

Ty= | 0—
V2 -

(26)
For p = 3, Ty = 0.61 and the asymptotic energy-
density at the dynamic critical temperature takes the
value £,5(Tq) = —0.82.

In the low-temperature phase the solution of equa-
tions (12-21) involves a modification of the FDT [16,17],
Ry(t,t') = T 0y Cs(t,t)0(t — '), for the slow part of
the relaxation. The effective temperature [27] is given by
Tef = (geaT)/[(p — 2)(1 = gea)] and the energy-density
reads

1

Eas(T) = === [(P = 2)(1 — qea)qbe " + (1 — ¢5,)]

5T (27)

with the Edwards-Anderson order parameter, ¢.,, deter-
mined by

pp—1)

2

At the dynamic transition Teg =T, ga = (p —2)/(p— 1)
and T; is given by equation (26). The numerical solution of
equations (27) and (28) yields the value of the asymptotic
energy-density in the glassy phase.

qﬁ;Q(l - Qea)2 =77 (28)

0 200 400 600 800 1000 1200 1400

t

Fig. 1. The evolution in time of the energy-density £(¢) in
the classical p = 3 spin model close and above the param-
agnetic — spin-glass transition. The solid line is £ (TQ)(t) and
has been obtained using a rapid quench to 7> = 0.75. The
other curves show £ =T2)(¢), i.e. the result of having per-
formed a temperature jump from 77 = 0.65,0.7,0.725 to T>
at t1 = 92, 170, 295 time-steps, respectively. The asymptotic
value Eq5(T2) &~ —0.677 is shown with a horizontal line.

3.2 Numerical results

The effect of temperature variations on the dynamics of
the p-spin models in the glassy phase was studied in a
couple of papers. The effect of small amplitude tempera-
ture cycles on the non-equilibrium relaxation of the p = 2
model were discussed in [28] while their influence on the
dynamics of the p = 3 was analyzed in [29].

We show here that the p-spin model with p > 2 cap-
tures a similar phenomenology in the sense that a hump
with a slow relaxation is obtained when the Kovacs’ pro-
tocol is applied. The model with p = 2 is related to ferro-
magnetic domain growth, as described by the O(N) model
in d = 3, and our results are intimately related to the ones
in [10,12]. In the following we present the data for p = 3
(the schematic mode-coupling-theory [17,26]) only.

Figure 1 shows the time-evolution of the energy-
density in the p = 3 classical model using different tem-
perature jumps chosen according to Kovacs’ rule. The
solid line has been obtained using a quench to 75 = 0.75.
Note that since T5 > Ty the quench is done within the
paramagnetic phase in which the equilibration time is
finite. The asymptotic value approached with the algo-
rithm is £,5(T2) ~ —0.677. (The analytic prediction is
Eas(T2) ~ —0.667. Here and in what follows we use a time
step § = 0.05 to numerically solve the integral-differential
equations.) The other curves include a temperature jump
from T; to Ty at t; when EM=T2) () = £,,(T). The
values of the parameters 77 and t; are given in the cap-
tion. As observed by Kovacs experimentally [1] and for
a variety of models [8-14], the evolution of the energy-
density is non-monotonic. Since the time t; is chosen so
as to have EN=T2 (1) = £,4(Ty) ~ —0.677, after the
temperature jump the energy density already has the ex-
pected asymptotic value. However, it evolves during ap-
proximately three decades before reaching the reference
curve, first increasing toward a maximum and then de-
creasing toward Eq4(T3).
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Fig. 2. The hump, AE(¢), as a function of the time-difference,
t —t1, in the classical p spin model with p = 3 close and above
its paramagnetic — spin-glass transition. The different curves
correspond to the intermediate temperatures 71 = 0.4, 0.5, 0.6,
0.65, 0.7, 0.725 (from top to bottom) and the reference curve
has been obtained for T = 0.75.

0.1 T T 400

Ak
ti

0 0.1 0.2 0.3 0.4

T —Ty

Fig. 3. The maximum height of the hump, Afx (t) = max AE
(red curve, +) and its position tx = ¢|mas (green curve, x)
as a function of the difference in temperature 7> — T1 in the
classical p spin model with p = 3 at T» = 0.75. The lines are fits
to power laws with logarithmic corrections, see equations (29)
and (30), with parameters a = 0.153 and b = 0.556 for the
height of the maximum and ¢ = 16.73 and d = —0.135 for its
position. (Available in colors at www.eurphysj.org.)

The qualitative features of this non-monotonic behav-
ior are better described by analyzing the hump AE. Fig-
ure 2 shows its dependence with the temperature differ-
ence To — T7. As in the experimental data, the height
of the hump, Ak = max AE, is an increasing func-
tion of x = T5 — T}, while the position of the maximum,
tx = t|max, is a decreasing function of the same param-
eter. In Figure 3 we show that these quantities are well
described by functions of the type

Alk(z) =ax (1 —blnx)
tic(2) = = (1 - dIna)

with a, b, ¢, d fitting parameters.

We also show in Figure 4 that tx, the position of the
maximum, can be fitted as tr = at?, where ¢ is the time
when the temperature jump has been applied, and a and
b are constants.

Three time-regimes can be identified in the hump:
short times well before the maximum is reached, inter-

1000 T T T T TTT

100

tk

1000

10 1 L
10 100

ty

Fig. 4. The position of the maximum in the hump, tx = t|maa,
as a function of the time when the jump in temperature is
imposed, t1. The line is the power-law relation tx = at? with
a =1.901 and b = 0.908.

i
0.05 | | | | | | | |
0.04 — —

0.03

AE(H)

0.02

0.01

t—t
Fig. 5. The short time fitting of the data for three values of the

lower temperature, 71 = 0.6,0.65,0.7, (from top to bottom)
using equation (31).

mediate times around the maximum and long-times when
the hump approaches its asymptotic vanishing value. The
time-temperature dependence in the three regimes can be
summarized as follows.

Short times

In the short time regimen, a linear function with logarith-
mic corrections [12]

Fs(x) =az(l—blnx) (31)
fits the data with great precision. Indeed, in Figure 5 we
show together the data for 77 = 0.6, 0.65, 0.7 and t; =

63, 92, 170 respectively and the fits by Fs(z).
The data can also be scaled using

(32)

T
AE(t) = (T — Th) Fs <(t - tl)%) :
An accurate description of the rescaled data is achieved
taking a = 0.0623 and b = 0.251 for Fy(z), see Figure 6.
Intermediate times

The time-temperature dependence of the intermediate
part of the relaxation is well described with the scaling
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0-4 I I I I I I I I

AEM) /(T —Th)

(t—t1) * (T1/T>)

Fig. 6. The short time scaling of the data for three values of
the lower temperature, 71 = 0.6, 0.65, 0.7, using equation (32).
The solid line is a fit of the rescaled data for 71 = 0.65 using
equation (31) with @ = 0.0623 and b = 0.251.

1.2 L

0.8 = ’ ’ *E‘x, ]

AE(H)]AEK

04 (.7 -

0 1 1
0.1 1 10

(t—t1)/(tx —t1)

Fig. 7. The scaling for intermediate times with 77 =
0.5,0.6,0.65, 0.7, see the text for an explanation.

form
AS(t):AEK}'i( t—h )
tg — 11

see Figure 7. This scaling law is of the class found in [9,13].

(33)

Long times

The long times decay of the hump, i.e. for times well be-
yond tg, is exponential
AE(t) = ae ™. (34)

The curves AE(t) for different T} can be made to collapse
by shifting time according to

t—>t+(tK—t1). (35)
At a certain long time ¢, the systems that have spent a
time t; in contact with a colder heat bath at tempera-
ture T are in a state that will be reached tx — t; units
of time later by the system that was continuously at the
higher temperature T5. In this sense, the systems on which
a temperature shift was applied are in advance with re-
spect to the reference one (Fig. 8).

Finally, we implemented the same protocol using tem-
peratures 77 and 75 that are both below the dynamic
critical temperature Ty. As shown in Figure 9 the qual-
itative behavior is the same as on the other side of the

0.08

0.04 S0 —

AE()

0.02 |- : —

0 III“II 1 1 1 1

100 1000

Fig. 8. For long times the curves collapse on a master curve
under the time-shift in equation (35). With red solid line the
reference curve £(72)(t); with dashed lines the curves under the
effect of the temperature jump from 77 = 0.5, 0.6, 0.65, 0.7 (left
to right) translated in time ¢t — t+ At with At = 15,19, 23, 31.
The final approach to zero is exponential. (Available in colors
at www.eurphysj.org.)

0.12 .

0.09 — —

0.06 — -

AE()

003 = /T N

1000

0 e
1 10 100
t—t
Fig. 9. The hump in the glassy phase of the classical p-
spin model with p = 3 using 77 = 0.3,0.4,0.45,0.5 with
t1 = 80, 173, 330, 1080, respectively (from top to bottom), and
T» = 0.55.

transition point. It is interesting to note that the curves
for the perturbed system join, and become independent of
T1 before reaching the reference curve (this is similar to
what observed in [8]).

In the low temperature phase the scalings discussed
above are modified as follows. In the short-times regime,
the scaling function (31) remains valid but the scaling
form (32) is modified to

AE(E) = (Th — T)) . ((t ) (%)a) . (36)

1> — 1T
a==—"-

- (37)

For intermediate times we found

1+a
AE(t) = Afk F; <(; —t;) ) 7 (38)

with F; independent of 17 and T5. At very long times,
the approach to zero is a power law, at~?. The shift ¢t —
t+ (tx — t1) is also efficient collapsing the data.
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3.3 Discussion

The non-trivial content of the hump is its slow relaxation
and dependence on T — T;. The observed behavior has
been captured by several models already presented in the
literature. Let us discuss these explanations and compare
them to the one associated to the p-spin model.

First, one can compare the behavior observed in the
super-cooled liquid phase with a simpler system: an over-
damped harmonic oscillator. For this model a direct cal-
culation yields

AS(L) =
1

9 [k<$(2J> — kT (1 - e¥t1> — k/)BT2e%tli| e 25t (39)

with k£ the harmonic constant, v the friction coefficient
and zg the initial condition. The time t; is fixed by re-
quiring that AE(¢1) = 0. This condition forces the bracket
in equation (39) to be zero and then, there is not a forth-
coming hump. Clearly one needs to go beyond this model
to get the observed two-temperature dependence and slow
relaxation.

A simple next step is to study a model with a dis-
tribution of relaxation times that depends on tempera-
ture. A simple realization is the 2d Xy model in the spin-
wave approximation taking into account the contribution
of vortices [11]. This model is given by a Gaussian free
field (the angle of the local magnetization) with a T-
dependent stiffness, p(T'). It has a slow dynamics char-
acterized by the growth of a T-dependent correlation
length £7(t) = (p(T)t)'/? and it captures the phenomenol-
ogy of the Kovacs’ effect, as discussed by Berthier and
Holdsworth [11].

In slightly more general terms [9,12] the Kovacs’ ef-
fect can be rationalized in any system with a growing
temperature-dependent dynamic correlation length, that
is shorter than the equilibrium one. When one shifts the
temperature to T5 at t1, the length scales that are shorter
than 7, (t1), and are hence equilibrated at T3, have to re-
equilibrate at Ts, where their equilibrium energy is higher.
The structure reached at 77 has to break up and allow
for the nucleation of new structures equilibrated at T5.
Instead, the length scales that are longer than #7 (¢1)
are still not equilibrated at 77 and they may continue
their evolution to equilibrate now at T5. The former pro-
cesses involve shorter length-scales and should be faster
and dominate the first part of the relaxation after t; hence
leading to an energy increase. The latter processes are
slower and dominate the decay from the maximum to-
ward the asymptotic value £,5(T%). Within this picture,
the time at which the maximum in AE is reached cor-
responds to the time when the small length scales have
equilibrated at the new temperature 75. A similar argu-
ment was put forward to explain the overshoot observed in
the time-dependent dielectric constant of dipolar glasses
after a temperature jump [3]. It is also behind the calcula-
tion presented by Brawer on the ferromagnetic Ising chain
at very low temperature [10].

However, it is not necessary to invoke a growing cor-
relation length to capture the qualitative features of the
Kovacs’ effect. The main ingredient in the p-spin model
that leads to this effect is the slow — non-exponential
— and temperature dependent relaxation of the linear re-
sponse after a strong perturbation. A scenario with a wide
spectrum of relaxation times that depends on temperature
was used in the past to explain the Kovacs’ effect [5]. Here
we demonstrated that, as one could have expected [12], the
p-spin model or, equivalently, the MCT with no equilibra-
tion assumption, has this property.

The temperature and time dependence of the hump do
depend on the model considered but the main qualitative
features of the effect are shared by all of them. In the
context of the spin models related to the MCT these will
be obviously modified if one considers a mixture of p = 2
and p = 4 models (that corresponds to going from the
schematic MCT to more refined versions).

Finally, let us discuss the relevance of the Kovacs’ ef-
fect for the development of a thermodynamics of the non-
equilibrium glassy state.

The attempts to use a thermodynamics for non-
equilibrium glassy systems are based on the introduction
of effective state variables, basically temperature and pres-
sure. Initially, a (constant) fictive temperature that char-
acterizes the glassy structure was introduced by Tool [30].
As a consequence of Kovacs’ experiments it was realized
that this single parameter was not enough to describe the
evolution of the glass and the fictive temperature was up-
graded to be a full history dependent function measuring
the departure from equilibrium [1,2,31]. Whether the fic-
tive temperature, as defined in [1,30,31] behaves as a ther-
modynamic temperature remains to be proved. One can
also translate the study of the Kovacs’ effect in the parking
lot model by Tarjus and Viot [14] in these terms: the sec-
ond time-dependent state variable introduced generalizing
Edwards’ prescription [32] acts as a fictive temperature.

More recently, an effective temperature was defined
using the modification of the fluctuation — dissipation
theorem in slowly evolving non-equilibrium systems. The
interpretation of this quantity as a bonafide temperature
was discussed, and some conditions on the physical rele-
vance of this definition were also given [27]. In particular,
the need to have a system evolving slowly — characterized
by a slow relaxation of one time quantities — to be able
to associate the properties of a temperature to the FDT
ratio was reckoned and stressed. The situation in Kovacs’
experiment goes beyond this limit: the system is strongly
perturbed and the one-time quantity under study has a
non-trivial, non-monotonic time-dependence. The Fluctu-
ation Dissipation Relation also depends on time in a non-
trivial manner [34]. Thus one cannot assert that it leads
to a bonafide temperature and use it to construct a simple
extension of thermodynamics to describe the subsequent
behavior of the system.

A similar conclusion, though expressed in terms of the
potential energy landscape (PEL) scenario was reached
by Mossa and Sciortino [8]. These authors showed, with
molecular dynamic simulations of the fragile glass former
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OTP, that two systems in identical thermodynamic con-
ditions (same values of T, V, P) can be in very different
regions of their potential energy landscape if one of them
has been strongly perturbed. Since the strongly perturbed
system wanders in a region of the PEL that is never sam-
pled in equilibrium, its configuration cannot be associated
to that of an equilibrated liquid at a different temperature.
The region of the PEL sampled allows for a definition of
a microcanonical temperature only when the variation of
the external conditions (temperature in this case) is small.
Mossa and Sciortino arrived at this conclusion by com-
paring the properties of the inherent structures (closest
local minimum in the PEL) visited during aging after a
temperature jump of large magnitude to those sampled in
equilibrium.

4 Quantum model

When quantum fluctuations are switched on one has to
deal with the full Schwinger-Dyson equations (12-21).
As explained in [33] the parameter that plays the role
of the transverse field in truly quantum spin models is
here the inverse of the mass M. Indeed, this model un-
dergoes a phase transition in the (7, I") plane with I" =
h? /(M J ) from an equilibrium paramagnetic phase to a
non-equilibrium glassy one. In order to test the memory
effect in the quantum problem, we then apply the Ko-
vacs’ protocol using M ~! as the control parameter and
we follow the evolution of the averaged potential energy
density E(t).

In the quantum problem the asymptotic value of the
potential energy density depends on M. (In the classical
limit it does not.) The relaxation of the potential energy
density at constant M has (damped) oscillations whose
magnitude depend on the parameter M. For large values
of the mass the oscillations have a sufficiently large am-
plitude such that the asymptotic value falls within the
oscillation, i.e. £(t) < Eqs(T2, I2) for some finite times ¢.
In the following we choose a value of Ms such that the
system is close to the paramagnetic — glass transition and
for which E,5(T3, I) < £(¢) for all finite time ¢, see Fig-
ure 10. Another feature to signal is that the oscillation in
the energy-density decay may be such that there is more
than one value of ¢; for which EM1(t]) = £M2 see the
curve drawn with a dashed line in Figure 10 for which
M =0.8.

Figure 11 shows the result of applying Kovacs’ protocol
to a system at T = 0.75 with the reference value of the
mass, My = 0.5. We use four values of M1, M; = 0.6,0.8, 1
and 1.2 that satisfy My > My, i.e. I'1 < Is. For M} = 0.6,
1 and 1.2 we find a unique t; satisfying EM1(t) = M2,
For M; = 0.8 instead three solutions to this equation exist
as shown in Figure 10. Displayed in Figure 11 are the
reference energy density £(7212)(t) (solid red line) and
the hump in the energy densities obtained by shifting the
mass.

The first thing to note in the figure is that the curves
depend on the value of Mj, similarly to what happened

-0.2

0

04 -

Fig. 10. Energy-density decay in the quantum model with
p = 3 at constant mass and temperature. Solid line M = 0.5
and dashed line M = 0.8. In both cases 7' = 0.75.
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Fig. 11. Hump in the quantum p = 3 model at 7' = 0.75.
The reference curve, solid red line, corresponds to Mz = 0.5.
The modified curves have been obtained using, from bottom
to top at the maximum, M; = 0.6, t1 = 95 (dashed green);
M, = 0.7, t; = 82 (dashed blue); My = 0.8, t1 = 76 (dashed
gray); M1 = 0.8, t1 = 62 (dashed cyan); Mi; = 0.8, t1 =
46 (dashed magenta); M1 = 1, t1 = 47 (dashed black) and
M; = 1.2, t; = 49 (dashed orange). (Available in colors at
www.eurphysj.org.)

in the classical case with Ti: the larger the difference in
the masses (or in the quantum parameter I'), the more
pronounced the effect. There is also a weak decreasing
dependence of the position of the maximum with Ms— M;
(and Fl — FQ)

A second feature to remark is that the curves following
the jump in M go above the reference curve (cf. the clas-
sical problem where the approach to the reference curve
always occurs from below) and also might have a negative
initial part.

In the case in which there is more than one t;, the form
of the hump depends on the value chosen. In particular,
there is no negative part in the hump if we take ¢; such
that £EMi1—=M2)(¢) is growing with ¢.

Finally, in the glassy phase (T' = 0.2 and M = 0.5)
the oscillation in £(t) is almost completely damped. The
hump has a very similar behavior to the one found after
a shift in T'. Figure 12 shows the hump for several values
of the pairs (Mi,t;) given in the caption. Also in this
glassy case, the height of the hump increases with the
difference My— M7 and, simultaneously, the position of the



L.F. Cugliandolo et al.: Memory effects in classical and quantum mean-field disordered models 95

0.2 T T IIIIIII I/,l\l IIIII T T T TTTTT
015 — -
01— -
=
%Y
< -
0.05 —
[0 —— e —]
-0.05 1 1 IIIIIII 1 1 IIIIIII 1 L1 1111

1 10 100 1000
t—t

Fig. 12. The hump as a function of the time-difference ¢t — ¢1
in the glassy phase of the quantum p = 3 model using,
from bottom to top, M1 = 0.6,t1 = 539 (dashed green),
M, = 0.7,t; = 274 (dashed blue), M = 0.8,¢; = 204 (dashed
magenta), My = 1,¢, = 163 (dashed cyan), M1 = 1.2,¢; = 150
(dashed black), and the reference curve at constant Mz = 0.5
(solid red). The temperature is 7' = 0.2 in all cases. (Available
in colors at www.eurphysj.org.)

maximum has a very smooth drift toward smaller values
of t — tl .

Thus, as far as the Kovacs’ effect is concerned, we see
that the quantum problem also shows a non-trivial de-
pendence on the parameter M; (I7) and a slow relaxation
after the perturbation.

5 Conclusions

We conclude that models with no spatial structure, like
the p-spin spherical model that is intimately related to
the schematic mode-coupling theory, can reproduce non-
trivial memory effects when their non-equilibrium dynam-
ics is studied. Similarly to what observed when reproduc-
ing the hole-burning protocol [18], we found here that the
Kovacs’ memory effect is captured by this model. In this
sense, the Kovacs’ experiment is not able to prove the ex-
istence of a growing correlation length in glassy systems.
Assuming that a length scale exists one could, however,
compare the outcome of this and other experiments to
what can be derived from a domain-growth like picture
for glassy dynamics.

The reason for having these non-trivial long-memory
effects in these fully — connected spin models is that close
to their dynamic critical temperature (and below it) their
response function after strong perturbation has been ap-
plied is not given by a simple exponential relaxation. The
slow decay of the response implies that the effect of non-
linear perturbations takes very long to disappear. This is
encoded in the Schwinger-Dyson equations which describe
the dynamical evolution of the system.
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